If making an atlas from a non-cortical atlas,
volumetric atlases are the best options.
Instead of snapshotting images of inflated
brain, will snapshot brain slices given x, y, z
coordinates for the slices trhoush the slices
argument.
make_volumetric_ggseg( label_file, subject = "fsaverage5", subjects_dir = fs_subj_dir(), output_dir = tempdir(), color_lut = NULL, steps = 1:8, skip_existing = TRUE, slices = data.frame(x = c(130, 122, 122), y = c(130, 235, 112), z = c(130, 100, 106), view = c("axial", "sagittal", "coronal"), stringsAsFactors = FALSE), vertex_size_limits = NULL, dilate = NULL, tolerance = 0, ncores = 2, smoothness = 5, verbose = TRUE, cleanup = FALSE )
label_file | a volumetric image containing the labels |
---|---|
subject | Freesurfer subject, must exist in whatever subject directory specified or set in the environment with $SUBJECTS_DIR |
subjects_dir | Freesurfer subject directory |
output_dir | output directory path |
color_lut | a file containing color information for the labels |
steps | numeric vector of steps to run |
skip_existing | logical. If slice snapshots already exist, should these be skipped. |
slices | a data.frame with columns x, y, z, and view specifying coordinates and view of slice snapshots. |
vertex_size_limits | numeric vector of two, setting the minimum and maximum vector size of polygons. Defaults to NULL, which sets no limits. |
dilate | numeric. Dilation factor for polygons. Default NULL applies no dilation. |
tolerance | tolerance during vertex reduction |
ncores | number of cores for parallel processing (default numcores-2) |
smoothness | smoothing factor, argument to |
verbose | logical indicating to be verbose or not |
cleanup | logical to toggle removal of all intermediary files |
brain-atlas class
if (FALSE) { label_file <- file.path(fs_subj_dir(), subject, "mri/aseg.mgz") slices = data.frame(x=130, y=130, z=130, view="axial", stringsAsFactors = FALSE) aseg2 <- make_volumetric_ggseg( label_file = label_file, slices = slices ) # Have a look at the atlas plot(aseg2) }